汎用データロガーの製作について

電気電子情報系 〇笠野俊一 齊籐作義 飯塚武志 曽山雅史 石川幸一 永井眞一郎

1. はじめに

これまでに、本グループではワンチップ・マイ コンを利用した電子機器の製作を何回か行って きた。昨年度は、プロジェクト「電気工作ショッ プ」に依頼があった PIC マイコンを用いたデータ ロガーの製作を行った。このデータロガーはパソ コンと USB インタフェースで接続する仕様であ るが、当時からワイヤレス・データ通信を検討し ていた。そこで、今回は小型シングル・ボード・ コンピュータである Raspberry Piを利用した Wi-Fi (無線 LAN)でネット接続できる汎用性のあるデ ータロガーの製作を行った。

2. Raspberry Pi の概要

Raspberry Piは、イギリスで開発され教育用途 でのプログラミング教育を想定しているが、日本 では教育用だけでなく、個人向けホビーや技術者 のコンピュータ技術、そして研究現場にも導入さ れている。OSをインストールして周辺機器(ディ スプレイ、USBキーボード、USBマウス、USB ACア ダプター)を接続すれば、Linuxコンピュータと してディスクトップ環境を使用することができ る。また、Raspberry Piには汎用入出力 GPIO(General Purpose Input/Output)ポートがあ り、各種の電子デバイスを接続して計測・制御に も利用することができる。最初のモデルは2012年 2月に35ドルで受注が開始され、現在日本では 3000円台で購入することができる。

2.1 Raspberry Piのシステム設定

はじめに、Raspberry Piに周辺機器を接続して、 SDメモリカードからOSを起動できるようにする。 今回は、初めての取り組みなので情報の多い Raspberry Pi向けに最適化された、Raspbianをイ ンストールした。SDメモリカードをRaspberry Pi に挿入して、micro USB端子に電源を接続すると OSが起動して、「Raspi-config」が表示される。

このセットアップユーティリティで、

Raspberry Piの初期設定を行う。また、開発環境 として、パソコンからリモートログインして操作 ができるように無線LANの設定を行った。これに よって、Raspberry Piに接続した周辺機器を取り 外しても開発ができて、実際の運用状態にもなる。

2.2各種ソフトウェアの導入

プログラム開発で必要となるソフトウェアを インストールする。パソコン側には、Raspberry Pi へ SSH でリモートログインするためのソフトとし て Tera Term、ファイル転送用として WinSCP をイ ンストールした。また、Raspberry Pi には以下の ソフトをインストールして、プログラムの開発を 行った。

• Node. js
JavaScript 処理を実行できるサーバー環境
・Node.jsのWebアプリ開発モジュール
connect, ws
• i2c-tools
i2c デバイスとのデータの送受信
• ServoBlaster
サーボモーターの PWM 制御
• MJPG-streamer
静止画の撮影と動画の配信

3. 基礎実験

Raspberry PiのGPIOポートをコマンドラインか ら制御する簡単な予備実験を、i2c接続の温度セ ンサーSTTS751と超小型RCサーボMiniS RB90につ いて行った。

3.1 温度センサーをi2cで制御

この回路の結線図を図1に示す。i2cデバイス にアクセスするためには、アドレスを調べる必要 がある。これはi2cdetectコマンドで、現在i2cバ スに接続されているデバイスを図2のように調 べることができる。i2cには複数のデバイスを並 列に接続することができ、アドレスを指定して使 用する。ここには、4つのアドレスが表示されて いるが、温度センサーSTTS751のアドレスは0x39 になっている。バス1、デバイスアドレス0x39の 値を取得するには図3に示すように記述する。 0x1cという値が返されてきたが、10進に変換する と28℃になる。

図1 温度センサーの結線図

	Q.	1	2	3	4	5	6	7	8	9	a	þ	Ç	d	е	
):																
):																
):																-
):										39					3e	-
):									48							
):																-
):	60															
):																

図2 i2cデバイスのアドレス検出

図3 温度データの取得

3.2 サーボモーターのPWM制御

サーボモーターの電源は、電流容量の関係で Raspberry Piの電源から取ることができないので、 別途DC5VのACアダプターを用意した。回路の結線 は図4に示す。パルス信号周期が20msでデューテ ィー比を変えて角度を制御する。

この制御にはServoBlasterを利用して、次のように記述する。

\$ echo 2=120 >/dev/servoblaster

ここで数値の2は、サーボ番号を意味していて ピン番号でいうと12で、ピン名はGPI018である。 また数値の120はパルス幅1.2msを表している。 RB90では0.6ms~2.0msが角度で-70度~+70度に 対応している。

図3 サーボモーターの結線図

4. WebブラウザからのGPIO制御

実際の運用では、Webブラウザから温度センサーとサーボモーターを制御する。そのためにクライアント側のWebブラウザに表示するHTMLファイルとサーバー側がGPIOを制御するjsファイルを作成する。はじめに、クライアントとサーバー間の簡単な通信実験を行った。

リスト1 connectの動作確認

リスト2 表示するHTMLファイル

testconnect.html
html
<html lang="ja"></html>
<head></head>
<title>connect test page</title>
<body></body>
Hello World
これはconnectで表示しています

connectはnode用の拡張可能なHTTPサーバー・ フレームワークであり、connectサーバーを node. jsで以下のように実行する。

\$ node testconnect.js

そこで、パソコンのブラウザから以下のURLに アクセスすると、図4に示すようにHTMLファイル に記述した文字列が表示された。 http://192.168.11.10:1337/testconnect.html

Hello World これはconnectで表示しています

図4 パソコンのブラウザ画面

4.1 WebSocket通信によるI/O

通常のHTTPによるサーバーとの通信は、クライ アントがリクエストしてはじめて、サーバーがレ スポンスを返し、その都度に接続が完結する。こ の形式ではサーバー側の状態変化をリアルタイ ムでクライアントに通知することができない。そ こで、WebSocketを利用してリアルタイムの双方 向通信を実装した。Node. jsでWebSocketを利用す るには、いくつかのモジュールがあるがここでは、 wsモジュールを使用した。サーバーとなる Raspberry PiのGPIOに接続した温度センサーの値 を、定期的にpushさせるプログラムを作成した。 全てのプログラム・リストを示すことはできない が、リスト3にサーバー側の処理の要点を示す。 また、GPIOの制御コマンドはnode. jsのチャイル ド・プロセスとして実行している。図5はコマン ドラインからの実行と同様に、ブラウザの画面で 温度データを受信していることが確認できた。

5. MJPG-streamerの実験

MJPG-streamerを利用すると、Raspberry Piに 接続したカメラが捉えた動画を配信することが できる。WebブラウザでMJPG-streamer用のURLに アクセスするだけで動画を見ることができる。配 信する解像度やフレームレートなどはコマンド のオプションで設定する。今回、使用したUSB接 続WebカメラBuffalo BSW32KM03でMJPG-streamer を起動するシェルスクリプトweb32k-stream.sh をリスト4に示す。ここで、-iと-oオプションは それぞれ1行で記述する。起動は以下のようにコ マンドラインで実行する。

\$./web32k-stream.sh

次に、ブラウザから自分の環境における

Raspberry PiのIPアドレスにポート番号8080で以 下のようにアクセスする。

http://192.168.11.10:8080/

アクセスすると、/usr/local/wwwにあるデモペ ージのindex.htmlが表示される。

Interval 5 [s] v Send

図5 ブラウザによる温度データの受信

リスト 3 WebSocket通信 (サーバー側) // WebSocketサーバー作成 var WsServer = require('ws').Server; var ws = new WsServer({ host: '192.168.11.10', port: 8016 }); // クライアント接続時イベント ws.on('connection', function(socket) { socket.on('message', function(data) { . . . }); }); // データの配信 ws.clients.forEach(function(client) { client.send(JSON.stringify(data)); }); // 温度データの取得 var exec require('child_process').exec; var i2c_get=exec('i2cget -y 1 0x39');

6. データロガーの製作

今回製作するデータロガーの仕様としては、サ ーバーとなるRaspberry PiのGPIOポートにi2c接 続デジタル温度センサーを接続し気温を測定す ることにした。WebブラウザからURLにアクセスす ると、リアルタイムで気温のデータをチャートに 表示することである。チャートへのリアルタイム 表示には、ccchart.jsを利用した。ブラウザから データロガーの動作を設定するパラメータとし ては、温度データ送信のインターバルとした。

リスト4 MJPG-streamer起動スクリプト

web32k-stream.sh

#!/bin/sh PORT="8080" ID="test" PW="1234" SIZE="320*240" FRAMERATE="10" Export LD_LIBRARY_PATH=/usr/local/lib Mjpg_streamer ¥ -i "input_uvc.so -f \$FRAMRATE -r \$SIZE -d /dev/video0 -y" ¥ -o "output_http.so ¥ -w /usr/local/www/ -p \$PORT -c \$ID:\$PW"

また、今後の発展を考えてクライアントから i2cデバイスのデバイスアドレス、データアドレ ス、制御データを送信できるようにした。Webカ メラの回転角度調整は、スライダーで制御できる ようにした。カメラは画像処理をすることにより、 万能のセンサーとしての機能を持たせることも できるが、ここでは静止画の撮影と動画の配信だ けを行うことにした。図6が製作したデータロガ ーの外観で、右端奥に温度センサーを取り付けた。

図6 データロガーの外観

パソコンのブラウザで動作している画面が図 6で、上側がカメラ画像で下側が温度センサーの チャート図である。また、スマホとタブレットの ブラウザからアクセスしても図8にように動作 することが確認できた。アンドロイドのバーショ ンは、最新でないと動作しないことも確認した。

図7 パソコンのブラウザ画面

図8 スマホとタブレットのブラウザ画面

7. まとめ

今回初めて、Raspberry Pi を使用したが最低限 の目標は達成できた。今後は、様々な i2c デバイ スを接続して、応用範囲を広げたいと思っている。 Raspberry Pi はデジタル信号しか扱えないが、拡 張ボードやワンチップ・マイコンと合わせて使え ばアナログ信号も処理することができる。画像処 理とアナログ信号処理は今後の課題である。

参考文献

- 1) 林 和孝: Raspberry Pi で遊ぼう!
 (株) ラトルズ
- Japanese Raspberry Pi Users Group Raspberry Pi [実用]入門 技術評論社
- 3) Interface Sep.2013 スマホ×オレ装置 HTML5でI/O、CQ出版社
- 4) その他、関連 Web ページ